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Monte Carlo renormalization-group approach to the Bak-Sneppen model
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A recent renormalization-groufRG) approach to a modified Bak-Sneppen model is discussed. We propose
a self-consistency condition for the blocking scheme to be essential for a successful RG method applied to
self-organized criticality. A method realizing the RG approach to the Bak-Sneppen model is presented. It is
based on the Monte Carlo importance sampling idea. This technique performs much faster than the original
proposal. Using this technique we cross-check and improve previous r¢Si@63-651X97)01603-6

PACS numbe(s): 64.60.Lx, 64.60.Ak, 05.46:j, 05.70.Jk

Biological evolution has been a candidate for self-tial and temporal sizeR (&)~ ¢~ ™ andP(s)~s™ 7, respec-
organized criticality(SOQ [1] for a long time. The Bak- tively. The connection between spatial and temporal size is
Sneppen(BS) model [2] is a model describing biological given bys~ &% The critical exponents,, 7, andz are con-
evolution as a self-organized critical phenomenon. Anected via the scaling relatiary=7.— 1+ z. Extensive nu-
renormalization-grougRG) approach to calculating critical merical studies have been performed to calculate these expo-
exponents of the BS model was presentefBin This paper nents for the original BS mod¢6—8].
presents a Monte Carlo technique to realize the approach of The goal of a RG approach is threefold: calculate critical
[3] and provides thereby an easy way of cross-checking thexponents in an independent analytical or semianalytical
RG method. It accelerates and simplifies the calculation byvay, prove the attractive nature of the critical state, and dem-
using a Monte Carlo inspired technique. We are able to imonstrate the concept of universality. The RG approggi
prove the results given if3]. The paper is organized as considers small avalanches as objects to be integrated out
follows. We redefine the BS model and review the mainand provides a mapping of larger avalanches onto smaller
ideas of the RG approach. We discuss the main tool of thisnes. This goes in parallel with a modification of the dy-
approach, the run-time-statistiRTS) technique, which was namical rules at coarser scales.
presented if4]. Also we introduce our technique to perform  To be more precise, let us denote the fine scale with index
the RG approach more efficiently. The fixed point propertieql), the next coarser scale with 1). Block variables are
are given and basic critical exponents are calculated. ®,, fine variables aregp;. Using a block factor of 2, the

Following Ref.[3] we modify the BS model and define a simplest block transformation conserving the spatial ava-
left-or-right (L/R) BS model: ConsidemN real variables lanche structure is
dV=(4"), ie{l,... N} with values 0.8<¢{V<1.0. At
each timet determine indexi(t) indicating the smallest q)(t’):min{(ﬁ(() S 1)
value ¢; ) among allg; . Replace the valug; ) with a new : 2 rasl
value x with probability a(x), fa(x)dx=1. Choose with
equal probability the left or right neighbor of the active site Then the dynamics on the coarser level is again based on the
i(t) and replace it with a new valug with probability — Selection of the minimum. To perform one update on the
b(y), Jb(y)dy=1 [5]. After equilibration almost all vari- coarse grid, i.e., updating,, and .either the left or_right
ablese; have a higher value than someg. A p avalanche is neighborl(t)=1, we have to consider a process with four
defined to start at tim& with the minimal Value¢i(ti):P, nelghborl_ng varlab_les on 'Fhe finer scale being update_d. Thus
lasts as long as consecutive minimal values are smaller thefh dynamllcal bIO(r:]klr}g of tm;e occursl antlj Wﬁ have d!fferent
p, and stops at if ¢;,=p. The temporal extension time scales on the fine and coarse level. The mapping con-

. - : L ! necting both time scales is dynamic, i.e., it depends on the
is given by s=t;—t;. The spatial ex_tensm@ IS dgfmed stochasticity of the temporal evolution. This will provide us
as the largest extent of active sites involved

: : 'with a modified dynamics based on new distributions
§=max <, ,=1,|i(t) —i(tz)|. Avalanches keep themselves ,a+1)y) and b +1)(x). The initial and final states of one
running by generating variables smaller thanif this num-  ypdating step on the coarse level are obtained by applying
ber of variables smaller thap, n,(p)==,0(p—¢"), de- Eq. (1) to the initial and final configuration of the corre-
creases with time during @ avalanche the avalanche is sponding fine level process. The spatial and temporal block-
called subcritical and will die out. On the other hand, ifing of the dynamical process is schematically shown in
n:(p) increases, the avalanche is called supercritical and wilFig. 1. The block transformation and the modified dynamics
last forever. Ifn;(p) stays constant we observe a critical have to be designed such that it makes statistically no differ-
avalanche. Critical avalanches obey power laws for their spaence for the final staté®) if we apply firstT fine updates
and then the block transformation or if we apply first the
block transformation and then perform one coarse update
* Address after June 1, 1997: Landestheatdsiigen, Eberhard- using the coarse dynamics: the blocking diagram has to be
str. 6, 72072 Thingen, Germany. commutative for a successful RG approach.
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0] p) ) p
¢! oV B pj,t+1(X)=ij,t(x)fo Pi.(Y)O(x—y)
1
BT - <L | pu(@dzdy @
N is a normalization factor. The probability distribution of
) by a0 the minimal sitei(t) and its left or right neighbor change

according to the rules of the L/R BS model to
FIG. 1. Concept of blocking in space and time using a block

transformation BTT updates on the fine levelare performed until Pi(t),t+1(X) =0 (X)O(1—X), (59
four neighboring variables are changed. The result of this process
defines a contribution to one time step on the coarse levél. Picv=10+2(X) =b(X). (5b)

Assume that we already know the probability distribu- Note that Eq.(4) is different [9] from the corresponding
tions@!*H(x) andb!*Y(x) of variables®,, and®,y.;  equations ir{3,4]. This leads to different results of the fixed
in the final state on the coarse level. It is then posdiBl¢o point properties, see below. Using the iterative ry#sand
perform a variable transformation leading to a uniform dis-(5) we can calculate the weight, of a given processy
tribution a'*Y(y)=0(y)®(1—y) and a new distribution contributing to the blocking procedure,

b(*1)(y). This reduces the possible RG proliferation to the
distribution b. All other rules (search for the minimum, 1 e
choose left or right neighbor, replace the value of the mini- va(p)= ZT“II:[]. i .4(p)- (6)
mal variable with a uniformly distributed ohare invariant

under thg RG.transforma}tlor_l. The final probability distributions in the four updated vari-
Scale invariant behavior is expected only for avalanches ~

that are critical, i.e.4() = p® . Therefore one has to con- ables contribute to the blocked distribgtio’a'sandb at the

» HERi T Pe next coarser level according to the weight of proces#s-
sider only critical processes for the mapping of a sequence gfg the variable transformation described &, a(x) may be
fine updates onto one coarse update. Only processesh  rescaled to a uniform distribution in the interd,1] and
four neighboring sites being updated affey time steps are the next renormalization procedure can be iterated.
relevant. Processes that stop earlier beca&fge);pg') for To realize the renormalization-group approach using the
t'>t; do not contribute since they represent small fluctuaRTS technique, one has to calculate the weights and final
tions with avalanche siz6<3 and are neglected in the RG probability distributions of all contributing processes for
step. The parametgs! is determined from the condition each iteration during the computation pf, using Eq.(9)

. below. Then one has to perform the same task for all paths
[ORN0)
thatny(p ',b™) should stay constant for critical aV"’llé“’]ches’using the valug. . Finally the block transformatiofil) has
see Eq.(9) below.

. . - to be applied. However, there is a huge amount of contrib-
We now want to discuss the run-time-statistics approach

: S uting processes: up to a length ©f, <20 we estimated a
d_eveloped if4]. Denote th‘? _probabmty dl_sftrlbutlon Sl a_t_ total number ofO(10'?) contributing processes. It is also
time t by p; ((x). The conditional probability that the mini-

; . o clear that most of them, especially of the longer processes
mal variable is located at sieis then (e.g., the ones with the minimal site at the same place for a
long time are of very small probability. This observation
L calls to mind the problems in “simple sampling” Monte
Ptmin,i(X)ZIOi,t(X)H f piA(y)dy. 2) Carlo algorlthms, cglculatmg properties and probabllltlgs of
i#i Jx all possible states in phase space. It is more convenient to
use an “importance sampling” method generating the con-
tributing processea according to their weight,. Then all
For the blocking procedure we are interested in the probabilgenerated processes of the ensemble contribute with equal
ity that ¢{" is the minimal siteand that the avalanche does Probability. In other words, we evaluate RTS integrals using
not stop, i.e."<p, which is the Monte Carlo importance sampling method.
To generate a single relevant processsing distribution
b®(x), we start with a variablep; o)=p, and apply the
o, rules of the L/R BS model until four neighboring sites are
Mit(p)= fo Prin,i (X)dX. (3  updated. For this process we count the number of variables
smaller tharp after the first time step as well as in the final
state,

Exploiting the information about the position of the minimal
value ¢;, ¢;<p, the probability distributionp; ((x) of all n(‘“:z A(p— =Y (73
other siteg§ modifies in the next time step to ! i '
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TABLE I. Comparison of results for critical exponents using the
renormalization-group  approach and  simulations. The
renormalization-group approach applies to the L/R version of the
BS model. RTS approach results are giveridh

RG method Simulation
MC approach RTS approach Original BS

T 1.1246(1% 1.1204 1.081)
Ty 1.29111) 1.2766
z 2.3361) 2.2975 2.43(19
051 i
#These results have been obtained from the scaling relation.
bThis result is given if7].
% 0.2 0.4 0.6 0.8 1

z processx. For an ensemble i’ relevant processas, each

occurring with a probabilit 1y, we obtain
FIG. 2. The fixed point distributiom*(x) is observed already 9 P Walpe')

after one renormalization step. For each RG stepréfevant pro- 1
cesses have been generated. E(HD(X):WE al " Y(x), (119

a

n(To;)zzi (p_d)i(t=Ta)). (7b) B(H—l)(X):%E '5(014—1)()(). (110

The sum is over all updated variables of processlf To these preliminary distributions we apply the variable
(a) = (a) — i
ni*’=0 or ny”=0, the generated process is not a relevan . ) o
1 T g ) P ! ] v ttransformatlon described i8], thereby switching back to a
process, since it stopped, i.éiy) > p, before four neighbor- hiform gistributional * (x) and a transformed distribution
ing sites are updated. Using this notation we can easily wrlt%(ul)(x)_ Now the described procedure may be iterated.

| | :
down ni—1(p,b") and n_, (p,b") obtained from the An ensemble of processes each occurring with prob-

generation of an ensemble Nf processe$10] ability v, , is generated by applying the rules of the L/R BS
1 model to processes starting Witﬂa(o)Zp as long as four
Ni—1(p,bM)= NE n{®, (8a)  neighboring sites have not been updated. Once this happens,

we stop the process and save its initial and final state. We
reject nonrelevant processes. Then the proeesscurs au-
tomatically with its correct weight,, without the need of an
explicit calculation ofv, using RTS. Then we start the same
procedure again for the next process that is generated com-
Since we are interested only in critical avalanches we haveletely independently from the previous one.
n(p{? ,bM)=const and obtaip! as a solution of Being considerably simpler our method is able to repro-
duce the results df3] with good accuracy in about one hour
0 i) of CPU time on a workstation. Moreover, there is no ne_ed to
i Pe D). (9 extrapolate the results froym= 20 t0 Tya= as done in
[3]. In our approach we effectively consid€p,,= , since
Using the secant method it converges in about five iterationsye allow arbitrarily long relevant processes.
Once we know the criticap{’ at levell for givenb(®), we On the other hand, since we generate a finite nurhbef
are able to evaluate atritical relevant processes starting  processes, we observe statistical fluctuations in the resulting
with ¢; y=p¢’ for their contribution to the blocked distri- ~distribution b)(x), whereas the methofB] gives in this
butionsa‘ " 1(x) and'g(m)(x). A relevant process con- ~ S€nse an exact_resmheglecting sm.all_errors dqe to the nu-
tributes with merical integration routings But this is a relatively small
drawback compared to the advantage of speeding up the
method, thereby having an effective method at hand to cross-

1
nt:tﬁnal(p’b(l)) - N; n<Taa) ' (8b)

ny(pg’ b)) =n,

=(+1) ) _ _ — minf 4t (1) check previous results.
a X)=46(x—m,), m,=min{p,* , .. , . . o
« 0= ) (627 621 (103 Starting with a distributio(®(x) = © (x)® (1 —x) at the
finest level|=0, we observe that the distributidn("(x)
B D %) = S(x— , — i (ta>, (ty) converges very fas_t. It_ reaches its flxed point shape alr_eady
a O0=OX=NG), Me=Min{dl, dogy (10b) after one renormalization step, see Fig. 2. Correspondingly

the value ofp!) converges also very fast to its fixed point
The first active sitél .oy has index 2 or 2j+1 and the value p;=0.5954. For the calculation df"(x) we evalu-

pair (2k,2k+1) is the right or left neighbor of (2j +1).  ated 16 relevant processes at each renormalization step. For
The four indices 2,2j +1,%,2k+1 have been updated in the determination ob(c') we evaluated 10processes per it-
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eration of the secant method and renormalization step. The The values of exponents obtained via the renormalization-
results of[3] differ significantly, which is probably due to group approach and via numerical simulation are compared
the error in one of the RTS-iteration equatideg. in Table I. Due to the probabilistic nature of our approach
The probability distributionP*(T) for the lengthT of  the fixed point distribution fluctuates a little. The relative
relevant processes, corresponding to the fixed point propegrror in p? z, K*, 7, and 7 induced by this fluctuation has
tiesb* andp{ decays exponentiallyp*(T)~e *"*T. The  peen estimated to be of order of T0 The results obtained
minimal length of a relevant processTs=3. At T=30 the  py numerical integration of the RTS equations giver{3h

probability is of order 10°. differ significantly due to the error in one of the RTS equa-

To compute the critical exponents from the fixed pointjons. The results of the Monte Carlo RG approach show a
properties we follow the discussion 8] and use EQslS)  qqincidence up to 4% with numerical values for the expo-

and(6) given ther_ejn. Eor_detgils Ehe reader is lreferre@Bﬂo nents of the original BS model. It is assumed that the L/R
From the probability distributiof .(T) we obtain the expo- version is in the same universality class as the original BS
nentz=2.33q1). For thecalculation of exponent,, de- model

scribing the spatial scaling of avalanche sizes, the probability In conclusion we have introduced a Monte Carlo

K™, that the site with minimal value is always the safustil L
the avalanche stopshas to be known. The value &* may renormallzat_lon-group method _for .the L/R Bak-Snepp_en
odel. Previous results for basic critical exponents are im-

be obtained again using our Monte Carlo approach. We havg'

to count the fraction of processes with the minimum at theor:ovsld' I\<N € k:ja_\ve proposed a seE-%onsistel_nzy condition for
same site at each time step until they stop due to the cond}[— (rans ocking diagram in RG methods applied to SOC sys-

tion ¢iB(TB)>p;. Using the fixed point distributiof™(x),

we find K*=0.18271), from which follows | would like to thank G. Mack and Y. Xylander for stimu-
7,=1.291X1). Using the scaling relation, connecting, lating discussions. This work was supported in part by the
7, and z, and our result for the dynamical exponentve  Deutsche Forschungsgemeinschaft and the Studienstiftung
obtain forr=1.124§1). des deutschen Volkes.
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