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Monte Carlo renormalization-group approach to the Bak-Sneppen model

Bernhard Mikeska*
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~Received 16 October 1996!

A recent renormalization-group~RG! approach to a modified Bak-Sneppen model is discussed. We propose
a self-consistency condition for the blocking scheme to be essential for a successful RG method applied to
self-organized criticality. A method realizing the RG approach to the Bak-Sneppen model is presented. It is
based on the Monte Carlo importance sampling idea. This technique performs much faster than the original
proposal. Using this technique we cross-check and improve previous results.@S1063-651X~97!01603-6#

PACS number~s!: 64.60.Lx, 64.60.Ak, 05.40.1j, 05.70.Jk
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Biological evolution has been a candidate for se
organized criticality~SOC! @1# for a long time. The Bak-
Sneppen~BS! model @2# is a model describing biologica
evolution as a self-organized critical phenomenon.
renormalization-group~RG! approach to calculating critica
exponents of the BS model was presented in@3#. This paper
presents a Monte Carlo technique to realize the approac
@3# and provides thereby an easy way of cross-checking
RG method. It accelerates and simplifies the calculation
using a Monte Carlo inspired technique. We are able to
prove the results given in@3#. The paper is organized a
follows. We redefine the BS model and review the ma
ideas of the RG approach. We discuss the main tool of
approach, the run-time-statistics~RTS! technique, which was
presented in@4#. Also we introduce our technique to perfor
the RG approach more efficiently. The fixed point propert
are given and basic critical exponents are calculated.

Following Ref.@3# we modify the BS model and define
left-or-right ~L/R! BS model: ConsiderN real variables
f(t)5(f i

(t)), iP$1, . . . ,N% with values 0.0<f i
(t),1.0. At

each time t determine indexi (t) indicating the smalles
valuef i (t) among allf j . Replace the valuef i (t) with a new
value x with probability a(x), *a(x)dx51. Choose with
equal probability the left or right neighbor of the active s
i (t) and replace it with a new valuey with probability
b(y), *b(y)dy51 @5#. After equilibration almost all vari-
ablesf j have a higher value than somerc . A r avalanche is
defined to start at timet i with the minimal valuef i (t i )

5r,
lasts as long as consecutive minimal values are smaller
r, and stops att f if f i (t f )

>r. The temporal extension

is given by s[t f2t i . The spatial extensionj is defined
as the largest extent of active sites involve
j[maxt i<t1 ,t2<t f

u i (t1)2 i (t2)u. Avalanches keep themselve

running by generating variables smaller thanr. If this num-
ber of variables smaller thanr, nt(r)[( iQ(r2f i

(t)), de-
creases with time during ar avalanche the avalanche
called subcritical and will die out. On the other hand,
nt(r) increases, the avalanche is called supercritical and
last forever. If nt(r) stays constant we observe a critic
avalanche. Critical avalanches obey power laws for their s
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tial and temporal size,Pj(j);j2tj andP(s);s2t, respec-
tively. The connection between spatial and temporal siz
given bys;jz. The critical exponentstj , t, andz are con-
nected via the scaling relationzt5tj211z. Extensive nu-
merical studies have been performed to calculate these e
nents for the original BS model@6–8#.

The goal of a RG approach is threefold: calculate criti
exponents in an independent analytical or semianalyt
way, prove the attractive nature of the critical state, and de
onstrate the concept of universality. The RG approach@3#
considers small avalanches as objects to be integrated
and provides a mapping of larger avalanches onto sma
ones. This goes in parallel with a modification of the d
namical rules at coarser scales.

To be more precise, let us denote the fine scale with in
( l ), the next coarser scale with (l11). Block variables are
F I , fine variables aref i . Using a block factor of 2, the
simplest block transformation conserving the spatial a
lanche structure is

F I
~ t8!5min$f2i

~ t ! ,f2i11
~ t ! %. ~1!

Then the dynamics on the coarser level is again based on
selection of the minimum. To perform one update on t
coarse grid, i.e., updatingF I (t) and either the left or right
neighborI (t)61, we have to consider a process with fo
neighboring variables on the finer scale being updated. T
a dynamical blocking of time occurs and we have differe
time scales on the fine and coarse level. The mapping c
necting both time scales is dynamic, i.e., it depends on
stochasticity of the temporal evolution. This will provide u
with a modified dynamics based on new distributio
a( l11)(x) and b( l11)(x). The initial and final states of one
updating step on the coarse level are obtained by apply
Eq. ~1! to the initial and final configuration of the corre
sponding fine level process. The spatial and temporal blo
ing of the dynamical process is schematically shown
Fig. 1. The block transformation and the modified dynam
have to be designed such that it makes statistically no dif
ence for the final stateF (1) if we apply firstT fine updates
and then the block transformation or if we apply first t
block transformation and then perform one coarse upd
using the coarse dynamics: the blocking diagram has to
commutative for a successful RG approach.
3708 © 1997 The American Physical Society
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Assume that we already know the probability distrib
tions ã( l11)(x) and b̃( l11)(x) of variablesF I (t) andF I (t)61

in the final state on the coarse level. It is then possible@3# to
perform a variable transformation leading to a uniform d
tribution a( l11)(y)5Q(y)Q(12y) and a new distribution
b( l11)(y). This reduces the possible RG proliferation to t
distribution b. All other rules ~search for the minimum
choose left or right neighbor, replace the value of the m
mal variable with a uniformly distributed one! are invariant
under the RG transformation.

Scale invariant behavior is expected only for avalanc
that are critical, i.e.,f i (t i )

( l ) 5rc
( l ) . Therefore one has to con

sider only critical processes for the mapping of a sequenc
fine updates onto one coarse update. Only processesa with
four neighboring sites being updated afterTa time steps are

relevant. Processes that stop earlier becausef i (t8)
( l )

>rc
( l ) for

t8.t i do not contribute since they represent small fluct
tions with avalanche sizeS<3 and are neglected in the R
step. The parameterrc

( l ) is determined from the condition
thatnt(rc

( l ) ,b( l )) should stay constant for critical avalanche
see Eq.~9! below.

We now want to discuss the run-time-statistics appro
developed in@4#. Denote the probability distribution off i at
time t by pi ,t(x). The conditional probability that the mini
mal variable is located at sitei is then

pmin,i
t ~x!5pi ,t~x!)

jÞ i
E
x

1

pj ,t~y!dy. ~2!

For the blocking procedure we are interested in the proba
ity that f i

(t) is the minimal siteand that the avalanche doe
not stop, i.e.,f i

(t),r, which is

m i ,t~r!5E
0

r

pmin,i
t ~x!dx. ~3!

Exploiting the information about the position of the minim
value f i , f i,r, the probability distributionpj ,t(x) of all
other sitesj modifies in the next time step to

FIG. 1. Concept of blocking in space and time using a blo
transformation BT.T updates on the fine levell are performed until
four neighboring variables are changed. The result of this pro
defines a contribution to one time step on the coarse levell11.
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pj ,t11~x!5Npj ,t~x!E
0

r

pi ,t~y!Q~x2y!

3 )
kÞ i , j

E
y

1

pk,t~z!dzdy. ~4!

N is a normalization factor. The probability distribution o
the minimal sitei (t) and its left or right neighbor chang
according to the rules of the L/R BS model to

pi ~ t !,t11~x!5Q~x!Q~12x!, ~5a!

pi ~ t !61,t11~x!5b~x!. ~5b!

Note that Eq.~4! is different @9# from the corresponding
equations in@3,4#. This leads to different results of the fixe
point properties, see below. Using the iterative rules~4! and
~5! we can calculate the weightna of a given processa
contributing to the blocking procedure,

na~r!5
1

2Ta )t51

Ta

m ia~ t !,t~r!. ~6!

The final probability distributions in the four updated va
ables contribute to the blocked distributionsã and b̃ at the
next coarser level according to the weight of processa. Us-
ing the variable transformation described in@3#, ã(x) may be
rescaled to a uniform distribution in the interval@0,1# and
the next renormalization procedure can be iterated.

To realize the renormalization-group approach using
RTS technique, one has to calculate the weights and fi
probability distributions of all contributing processes f
each iteration during the computation ofrc , using Eq.~9!
below. Then one has to perform the same task for all pa
using the valuerc . Finally the block transformation~1! has
to be applied. However, there is a huge amount of cont
uting processes: up to a length ofTa<20 we estimated a
total number ofO(1012) contributing processes. It is als
clear that most of them, especially of the longer proces
~e.g., the ones with the minimal site at the same place fo
long time! are of very small probability. This observatio
calls to mind the problems in ‘‘simple sampling’’ Mont
Carlo algorithms, calculating properties and probabilities
all possible states in phase space. It is more convenien
use an ‘‘importance sampling’’ method generating the co
tributing processesa according to their weightna . Then all
generated processes of the ensemble contribute with e
probability. In other words, we evaluate RTS integrals us
the Monte Carlo importance sampling method.

To generate a single relevant processa using distribution
b( l )(x), we start with a variablef ia(0)

5r, and apply the
rules of the L/R BS model until four neighboring sites a
updated. For this process we count the number of varia
smaller thanr after the first time step as well as in the fin
state,

n1
~a!5(

i
Q~r2f i

~ t51!!, ~7a!
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nTa

~a!5(
i

Q~r2f i
~ t5Ta!

!. ~7b!

The sum is over all updated variables of processa. If
n1
(a)50 or nTa

(a)50, the generated process is not a relev

process, since it stopped, i.e.,f i (t).r, before four neighbor-
ing sites are updated. Using this notation we can easily w
down nt51(r,b

( l )) and nt5tfinal
(r,b( l )) obtained from the

generation of an ensemble ofN processes@10#

nt51~r,b~ l !!5
1

N(
a

n1
~a! , ~8a!

nt5tfinal
~r,b~ l !!5

1

N(
a

nTa

~a! . ~8b!

Since we are interested only in critical avalanches we h
nt(rc

( l ) ,b( l ))5const and obtainrc
( l ) as a solution of

n1~rc
~ l ! ,b~ l !!5ntfinal~rc

~ l ! ,b~ l !!. ~9!

Using the secant method it converges in about five iteratio
Once we know the criticalrc

( l ) at level l for given b( l ), we
are able to evaluate allcritical relevant processesa starting
with f ia(0)

5rc
( l ) for their contribution to the blocked distri

butions ã( l11)(x) and b̃( l11)(x). A relevant processa con-
tributes with

ãa
~ l11!~x!5d~x2ma!, ma5min$f2 j

~ ta! ,f2 j11
~ ta!

%,
~10a!

b̃a
~ l11!~x!5d~x2na!, na5min$f2k

~ ta! ,f2k11
~ ta!

%.
~10b!

The first active sitei a(t50) has index 2j or 2j11 and the
pair (2k,2k11) is the right or left neighbor of (2j ,2j11).
The four indices 2j ,2j11,2k,2k11 have been updated i

FIG. 2. The fixed point distributionb!(x) is observed already
after one renormalization step. For each RG step 109 relevant pro-
cesses have been generated.
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processa. For an ensemble ofN8 relevant processesa, each
occurring with a probabilityna(rc

( l )), we obtain

ã~ l11!~x!5
1

N8(a ãa
~ l11!~x!, ~11a!

b̃~ l11!~x!5
1

N8(a b̃a
~ l11!~x!. ~11b!

To these preliminary distributions we apply the variab
transformation described in@3#, thereby switching back to a
uniform distributiona( l11)(x) and a transformed distribution
b( l11)(x). Now the described procedure may be iterated.

An ensemble of processesa, each occurring with prob-
ability na , is generated by applying the rules of the L/R B
model to processes starting withf ia(0)

5r as long as four
neighboring sites have not been updated. Once this happ
we stop the process and save its initial and final state.
reject nonrelevant processes. Then the processa occurs au-
tomatically with its correct weightna without the need of an
explicit calculation ofna using RTS. Then we start the sam
procedure again for the next process that is generated c
pletely independently from the previous one.

Being considerably simpler our method is able to rep
duce the results of@3# with good accuracy in about one hou
of CPU time on a workstation. Moreover, there is no need
extrapolate the results fromTmax520 toTmax5` as done in
@3#. In our approach we effectively considerTmax5`, since
we allow arbitrarily long relevant processes.

On the other hand, since we generate a finite numberN of
processes, we observe statistical fluctuations in the resu
distribution b( l )(x), whereas the method@3# gives in this
sense an exact result~neglecting small errors due to the nu
merical integration routines!. But this is a relatively small
drawback compared to the advantage of speeding up
method, thereby having an effective method at hand to cro
check previous results.

Starting with a distributionb(0)(x)5Q(x)Q(12x) at the
finest level l50, we observe that the distributionb( l )(x)
converges very fast. It reaches its fixed point shape alre
after one renormalization step, see Fig. 2. Correspondin
the value ofrc

( l ) converges also very fast to its fixed poi
value rc

!50.5954. For the calculation ofb( l )(x) we evalu-
ated 109 relevant processes at each renormalization step.
the determination ofrc

( l ) we evaluated 107 processes per it-

TABLE I. Comparison of results for critical exponents using t
renormalization-group approach and simulations. T
renormalization-group approach applies to the L/R version of
BS model. RTS approach results are given in@3#.

RG method Simulation
MC approach RTS approach Original BS

t 1.1246(1)a 1.1204a 1.08~1!

tj 1.2911~1! 1.2766
z 2.336~1! 2.2975 2.43(1)b

aThese results have been obtained from the scaling relation.
bThis result is given in@7#.
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eration of the secant method and renormalization step.
results of@3# differ significantly, which is probably due to
the error in one of the RTS-iteration equations@9#.

The probability distributionP!(T) for the lengthT of
relevant processes, corresponding to the fixed point pro
tiesb! andrc

! decays exponentially:P!(T);e2const3T. The
minimal length of a relevant process isT53. At T530 the
probability is of order 1025.

To compute the critical exponents from the fixed po
properties we follow the discussion of@3# and use Eqs.~5!
and~6! given therein. For details the reader is referred to@3#.
From the probability distributionP!(T) we obtain the expo-
nent z52.336(1). For thecalculation of exponenttj , de-
scribing the spatial scaling of avalanche sizes, the probab
K!, that the site with minimal value is always the same~until
the avalanche stops!, has to be known. The value ofK! may
be obtained again using our Monte Carlo approach. We h
to count the fraction of processes with the minimum at
same site at each time step until they stop due to the co
tion f ib(Tb)

>rc
! . Using the fixed point distributionb!(x),

we find K!50.1827(1), from which follows
tj51.2911(1). Using the scaling relation, connectingtj ,
t, and z, and our result for the dynamical exponentz we
obtain fort51.1246(1).
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The values of exponents obtained via the renormalizati
group approach and via numerical simulation are compa
in Table I. Due to the probabilistic nature of our approa
the fixed point distribution fluctuates a little. The relativ
error in rc

! z, K!, tj, andt induced by this fluctuation ha
been estimated to be of order of 1023. The results obtained
by numerical integration of the RTS equations given in@3#
differ significantly due to the error in one of the RTS equ
tions. The results of the Monte Carlo RG approach show
coincidence up to 4% with numerical values for the exp
nents of the original BS model. It is assumed that the L
version is in the same universality class as the original
model.

In conclusion we have introduced a Monte Car
renormalization-group method for the L/R Bak-Snepp
model. Previous results for basic critical exponents are
proved. We have proposed a self-consistency condition
the blocking diagram in RG methods applied to SOC s
tems.
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